首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96714篇
  免费   3768篇
  国内免费   2718篇
化学   37468篇
晶体学   966篇
力学   8088篇
综合类   199篇
数学   34030篇
物理学   22449篇
  2023年   385篇
  2022年   432篇
  2021年   630篇
  2020年   812篇
  2019年   781篇
  2018年   10936篇
  2017年   10656篇
  2016年   6906篇
  2015年   1783篇
  2014年   1396篇
  2013年   1773篇
  2012年   5463篇
  2011年   12308篇
  2010年   6781篇
  2009年   7142篇
  2008年   7731篇
  2007年   9781篇
  2006年   1313篇
  2005年   2200篇
  2004年   2325篇
  2003年   2541篇
  2002年   1521篇
  2001年   723篇
  2000年   716篇
  1999年   566篇
  1998年   551篇
  1997年   456篇
  1996年   522篇
  1995年   432篇
  1994年   369篇
  1993年   321篇
  1992年   294篇
  1991年   265篇
  1990年   227篇
  1989年   209篇
  1988年   149篇
  1987年   146篇
  1986年   131篇
  1985年   121篇
  1984年   84篇
  1983年   80篇
  1982年   78篇
  1981年   60篇
  1980年   61篇
  1979年   52篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1909年   41篇
  1908年   40篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
51.
CeO2-based catalysts are widely studied in catalysis fields. Developing one novel synthetic approach to increase the intimate contact between CeO2 and secondary species is of particular importance for enhancing catalytic activities. Herein, an interfacial reaction between metal–organic framework (MOF)-derived carbon and KMnO4 to synthesize CeO2−MnO2, in which carbon is derived from the pyrolysis of Ce-MOFs under an inert atmosphere, is described. The MOF-derived carbon is found to restrain the growth of CeO2 crystallites under a high calcination temperature and, more importantly, intimate contact within CeO2/C is conveyed to CeO2/MnO2 after the interfacial reaction; this is responsible for the high catalytic activity of CeO2−MnO2 towards CO oxidation.  相似文献   
52.
Enantioselective total syntheses of pseudopteroxazole ( 1 ) and ileabethoxazole ( 2 ) are presented. The two original stereocenters were constructed in excellent enantioselectivity and good diastereoselectivity through Carreira's asymmetric dual catalytic allylation, which shows potential for accessing diastereoisomers at C2 and C3 of 1 and 2 . Cationic cyclizations of 13 and 24 demonstrated an effective pathway for the construction of the opposite configurations at C1 in 1 and 2 . Additionally, an approach for the introduction of methyl at C4 is a feasible solution for structural modifications at C4 in 1 and 2 .  相似文献   
53.
We report on the preparation of reduction‐responsive amphiphilic block copolymers containing pendent p‐nitrobenzyl carbamate (pNBC)‐caged primary amine moieties by reversible addition–fragmentation chain transfer (RAFT) radical polymerization using a poly(ethylene glycol)‐based macro‐RAFT agent. The block copolymers self‐assembled to form micelles or vesicles in water, depending on the length of hydrophobic block. Triggered by a chemical reductant, sodium dithionite, the pNBC moieties decomposed through a cascade 1,6‐elimination and decarboxylation reactions to liberate primary amine groups of the linkages, resulting in the disruption of the assemblies. The reduction sensitivity of assemblies was affected by the length of hydrophobic block and the structure of amino acid‐derived linkers. Using hydrophobic dye Nile red (NR) as a model drug, the polymeric assemblies were used as nanocarriers to evaluate the potential for drug delivery. The NR‐loaded nanoparticles demonstrated a reduction‐triggered release profile. Moreover, the liberation of amine groups converted the reduction‐responsive polymer into a pH‐sensitive polymer with which an accelerated release of NR was observed by simultaneous application of reduction and pH triggers. It is expected that these reduction‐responsive block copolymers can offer a new platform for intracellular drug delivery. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1333–1343  相似文献   
54.
Outcomes of chemical reactions are generally dominated by the intrinsic reactivities of reaction partners, but enzymes frequently override such constraints to transform less reactive molecules in the presence of more reactive ones. Despite the attractiveness of such catalysis, it is difficult to build synthetic catalysts with these features. Micellar imprinting is a powerful method to create template-complementary binding sites inside protein-sized water-soluble nanoparticles. When a photocleavable functional monomer was used to bind two phosphonate/phosphate templates as transition-state analogues, active sites with predetermined size and shape were formed inside doubly cross-linked micelles through molecular imprinting. Postmodification replaced the binding group with a catalytic pyridyl group, forming highly selective artificial esterases. The catalysts displayed enzyme-like kinetics and turnover numbers that were in the hundreds. The selectivity of the catalysts, derived from the substrate-complementary imprinted active sites, enabled transformation of less reactive esters in the presence of more reactive ones.  相似文献   
55.
Science China Chemistry - As bifunctional materials, phenanthrene derivatives 2,7-diphenylphenanthrene and 2,7-di(styryl)phenanthrene (DPPa and DSPa) were designed and studied. Both materials show...  相似文献   
56.
Molybdenum disulfide (MoS2) is an intensively studied anode material for lithium-ion batteries (LIBs) owing to its high theoretical capacity, but it is still confronted by severe challenges of unsatisfactory rate capability and cycle life. Herein, few-layer MoS2 nanosheets, vertically grown on hierarchical carbon nanocages (hCNC) by a facile hydrothermal method, introduce pseudocapacitive lithium storage owing to the highly exposed MoS2 basal planes, enhanced conductivity, and facilitated electrolyte access arising from good hybridization with hCNC. Thus, the optimized MoS2/hCNC exhibits reversible capacities of 1670 mAh g−1 at 0.1 A g−1 after 50 cycles, 621 mAh g−1 at 5.0 A g−1 after 500 cycles, and 196 mAh g−1 at 50 A g−1 after 2500 cycles, which are among the best for MoS2-based anode materials. The specific power and specific energy, which can reach 16.1 kW and 252.8 Wh after 3000 cycles, respectively, indicate great potential in high-power and long-life LIBs. These findings suggest a promising strategy for exploring advanced anode materials with high reversible capacity, high-rate capability, and long-term recyclability.  相似文献   
57.
We consider the problem of performing matrix completion with side information on row-by-row and column-by-column similarities. We build upon recent proposals for matrix estimation with smoothness constraints with respect to row and column graphs. We present a novel iterative procedure for directly minimizing an information criterion to select an appropriate amount of row and column smoothing, namely, to perform model selection. We also discuss how to exploit the special structure of the problem to scale up the estimation and model selection procedure via the Hutchinson estimator, combined with a stochastic Quasi-Newton approach. Supplementary material for this article is available online.  相似文献   
58.
The development of high-efficiency electrocatalysts with low costs for the oxygen evolution reaction (OER) is essential, but remains challenging. Herein, a new synthetic process is proposed to prepare Ni3S4 particles embedded in N,P-codoped honeycomb porous carbon aerogels (Ni3S4/N,P-HPC) through a hydrogel approach. The preparation of Ni3S4/N,P-HPC begins with the sol–gel polymerization of tripolyphosphate, chitosan, and guanidine polymer that contains metal-binding sites, allowing for the uniform incorporation of Ni ions into the gel matrix, freeze-drying, and subsequent carbonization under an inert atmosphere. This synthesis resolves difficulties in synthesizing the pure Ni3S4 phase caused by the instability of Ni3S4 at high temperature, while affording good control of the porous structure and N,P-doping of carbon aerogels. The synergy between the structural advantages of N,P-carbon aerogels (such as easily accessible active sites, high specific surface area, and excellent electron transport) and the intrinsic electrochemical properties of Ni3S4 result in the outstanding OER performance of Ni3S4/N,P-HPC, with overpotentials as low as 0.37 V at 10 mA cm−2. The work outlined herein offers a simple and effective method for the development of carbon-based electrocatalysts for renewable energy conversion.  相似文献   
59.
Room temperature Suzuki cross‐coupling polymerization of aryl dibromides/diiodides with aryldiboronic acids/acid esters with t‐Bu3P‐coordinated 2‐phenylaniline‐based palladacycle complex, [2′‐(amino‐kN)[1,1′‐biphenyl]‐2‐yl‐kC]chloro(tri‐t‐butylphosphine)palladium, as a general precatalyst is described. Such room temperature Suzuki cross‐coupling polymerization is achieved by employing six equivalents or more of the base and affords polymers within an hour, with the yields and the molecular weights in general comparable to or higher than reported results that required higher reaction temperature and/or longer polymerization time. Our study provides a general catalyst system for the room temperature Suzuki cross‐coupling polymerization of aryl dibromides/diiodides with aryldiboronic acids/acid esters and paves the road for the investigation of employing other monodentate ligand‐coordinated palladacycle complexes including other electron‐rich monophosphine‐coordinated ones for room temperature cross‐coupling polymerizations. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1606–1611  相似文献   
60.
Hu  Xin  Du  Jialu 《Nonlinear dynamics》2018,94(1):365-376
Nonlinear Dynamics - Considering the dynamics characteristics of thruster systems for dynamically positioned marine vessels with model parameter uncertainties and unknown time-varying ocean...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号